1. W.X. Zhang, H.
Wang,C.H. Shi,S.Y. Liu,S.Y.
Chang, C. He* Tunable
Electronic and Optical Properties of a Planar Hydrogenated AsSi Hybrid
Nanosheet: A Potential Wide Water-Splitting Photocatalyst J. Phys. Chem. C (2019) 123, 14999-15008.
2. C. He, J. H. Zhang, W. X.
Zhang,* T. T. Li Type-II InSe/g-C3N4 Heterostructure as a
High-Efficiency Oxygen Evolution Reaction Catalyst for Photoelectrochemical
Water Splitting J. Phys.
Chem. Lett. (2019), 10, 3122-3128
3. T.T. Li, C. He*, W.X. Zhang* A
novel porous C 4 N 4 monolayer as a potential anchoring material for lithium–sulfur battery design J.
Mater. Chem. A, (2019), 7, 4134-4144
4. C. He, J. H. Zhang, W. X.
Zhang* and T. T. Li GeSe/BP van der Waals Heterostructures as Promising Anode
Materials for Potassium-Ion Batteries J. Phys. Chem. C 2019, 123,
5157−5163(IF=
4.536)
5. Cheng He, Ming Cheng, Tongtong Li, and Wenxue Zhang
Tunable Ohmic, p‑Type
Quasi-Ohmic, and n‑Type Schottky Contacts of Monolayer SnSe with Metals ACS Appl.
Nano Mater. (2019), 2, 2767−2775
6. Tongtong Li, Cheng He,* and Wenxue
Zhang* Primitive and O‑Functionalized R‑Graphyne-like BN Sheet: Candidates for SO 2 Sensor with High Sensitivity
and Selectivity at Room Temperature ACS Appl. Electron. Mater. (2019), 1, 34−43.
7. W.X. Zhang, W.H. He, T.T. Li, J.W. Zhao, C.
He, *Theoretical prediction of germanium selenium nanosheet as a
potential anode material for high-performance alkali-metal based battery J
Solid State Chem. (2019) 277, 17-24 IF= 2.299(SCI)
8. T.T. Li , C. He,* W.X. Zhang,* M.
Cheng Enhanced catalytic CO oxidation by Cu 13-m Ni m (m=0, 1, 13) clusters at
ambient temperatures with more active sites and distinct mechanistic pathways Appl. Surf. Sci. (2019), 479,39-46 IF =4.439(SCI)
9. Xingxing Jiao,
Yangyang Liu, Bing Li, Wenxue Zhang, Cheng He, Chaofan Zhang,
Zhaoxin Yu Tieyu Gao, Jiangxuan Song,*
Amorphous phosphorus-carbon nanotube hybrid anode with ultralong cycle life and
high-rate capability for lithium-ion batteries Carbon 148 (2019) 518-524
10. C. He, Cheng. M,
Zhang. M, W.X. Zhang* Interfacial Stability and Electronic Properties of Ag/M
(M = Ni, Cu, W, and Pd) and Cu/Cr Interfaces Journal of Physical Chemistry C (2018) 122, 17928-17935(IF= 4.536)
11. W.X. Zhang ,
W.H. He, J.W. Zhao, C. He* Electronic properties of blue
phosphorene/transition metal dichalcogenides van der Waals heterostructures
under in-plane biaxial strains J Solid State Chem. (2018) 265, 257-265
IF= 2.299(SCI)
12. T.T. Li, C. He*, W.X. Zhang* Electric field
improved the sensitivity of CO on substitutionally doped antimonene Appl. Surf. Sci. (2018), 427,388 IF =4.439(SCI)
13. T.T. Li, C. He*, W.X. Zhang* Structural complexity
and wide application of two-dimensional S/O type antimonene Appl.
Surf. Sci. (2018), 441,77 IF =4.439(SCI)
14. T.T. Li, C. He*, W.X. Zhang*, M. Cheng
Structural and melting properties of Cu-Ni clusters: A simulation study J
Alloy and compd. (2018), 752,76 IF =3.779(SCI)
15. M. M. Dong, C.
He*, W. X. Zhang*, A
tunable and sizable band gap of a g-C3N4/ graphene/g-C3N4 sandwich heterostructure: a van der Waals density functional study. J. Mater. Chem. C (2017), 5, 3830-3837.
(IF= 5.256)
16. M. M. Dong, C. He*. W. X.
Zhang,* Tunable electronic properties of arsenene and
transition-metal dichalcogenides heterostructures: A first principles calculation,Journal of Physical Chemistry C (2017) 121,
22040 (IF= 4.536)
17. C. He, X. F. Wang and W. X. Zhang* Coupling effects
of the electric field and bending on the electronic and magnetic properties of
penta-graphene nanoribbons Phys.Chem.Chem.Phys (2017),
19, 18426 IF= 4.123 (SCI)
18. M. Bai, W. X. Zhang*, C. He* Electronic and magnetic
properties of Ga, Ge, P and Sb doped monolayer arsenene J Solid State Chem. (2017) 251, 1 IF= 2.299(SCI)
19. W. X Zhang, M. M. Dong, T. T. Li, J. L. Gong, C. He*, Tunable electronic properties of graphene - fully
hydrogenated boron nitride heterostructure: a van der Waals density functional
study. Superlattices and Microstructures (2017), 109,23. IF= 2.123
20. W. X. Zhang, J.W. Zhao, W.H. He J. Luan, C. He*, Enhanced hydrophilic and conductive
properties of blue phosphorene doped with Si atom Chem. phys. Lett. (2016), 653,42 IF=1.815(SCI)
21. Hua Pan, Yanfei Jian, Yanke Yu,
Ningna Chen, Chi He*, Cheng He* Promotional mechanism of
propane on selective catalytic reduction of NOx by methane over In/H-BEA at low
temperature Appl. Surf. Sci. (2016), 390, 608 IF =3.105(SCI)
22.
W. X. Zhang, Y. B. Wang, P. Zhao, P; C. He* Tuning the electronic and magnetic properties
of graphene-like SiGe hybrid nanosheets by surface functionalization Phys.
Chem. Chem. Phys (2016), 18, 26205. IF= 4.123 (SCI)
23.
M. X. Xiao, Z.M. Ao T. H. Xu, C.
He, H.Y. Song and L.Wang Strain modulating half-metallicity of
semifluorinated GaN nanosheets Chem. phys. Lett. (2016), 653,42
IF=1.860(SCI)
24. C. He, X.L. Wu, G. Liu
and W.X. Zhang Elastic and transport properties of nanolayered crystalline
Cu/amorphous Cu-Zr multilayers Materials and Design (2016), 106,
133 IF =3.997(SCI)
25. C. He, W. X. Zhang, T.
Li, L. Zhao and X. G. Wang Tunable electronic
and magnetic properties of monolayer MoS2 on decorated AlN nanosheets: a van
der Waals density functional study Phys.Chem.Chem.Phys (2015), 17, 23207 IF= 4.123 (SCI)
26. C. He, G. Liu, W.X. Zhang, Z.Q. Shi, S.L.
Zhou, Tuning structures and electron transport properties of ultrathin Cu
nanowires by size and bending stress using DFT and DFTB methods RSC Advance (2015), 5,22464. IF= 3.708 (SCI)
27. C. He, W.X. Zhang, Z.Q. Shi, J.P. Wang, H. Pan, Effect of bending stress on structures and quantum
conduction of Cu nanowires, Applied
Physics Letters, (2012), 100, 123107. IF=3.515 (SCI)
28. C. He, L. Qi, W.X. Zhang,
H. Pan, Effect of electric and stress field on structures and quantum
conduction of Cu nanowires, Applied Physics Letters, (2011), 99, 073105. IF=3.515 (SCI)
29. C. He, W.X. Zhang,
J.L. Deng, Electric field and size effects
on atomic structures and conduction properties of ultrathin Cu nanowires, The
Journal of Physical Chemistry C, (2011), 115, 3327. IF=4.835(SCI)
30. K. Wang, C.J. Zhou, Dan Xi, Z. Q. Shi*, C. He*, H. X. Xia, G. W. Liu*, G. J .Qiao Componet-controllable
synthesis of Co(SxSe1-x) nanowires supported by carbon fiber paper as
high-performance electrode for hydrogen evolution reaction, Nano Energy (2015) 18, 1 IF = 10.07(SCI)
31. W. X. Zhang, C. He,* T. Li and S. B. Gong Tuning
electronic and magnetic properties of zigzag graphene nanoribbons with a
Stone–Wales line defect by position and axis tensile strain RSC Advance (2015), 5,33407. IF= 3.84 (SCI)
32. W. X. Zhang, T. Li,
S. B. Gong, C. He*, L. Duan
Tuning the
electronic and magnetic properties of graphene-like AlN nanosheets by surface
functionalization and thickness Phys. Chem. Chem. Phys. (2015), 17, 10919. IF= 4.493 (SCI)
33. W.X.
Zhang, C. He, Melting of Cu Nanowires: A Study Using Molecular
Dynamics Simulation, The Journal of Physical Chemistry C (2010), 114, 871. IF=4.835 (SCI)
34. C. He, W.X. Zhang,
Y. Li,
The glass transition behaviors of
low-density amorphous ice films with different thicknesses, Journal of Chemical Physics (2010), 133, 204504. IF=3.122
(SCI)
35. C. He, X. L. Wu, W.X. Zhang, Y. Li,
Size-Dependent Stability of Nonhelical and Helical Copper Nanowires Using
Density Functional Theory and Density-Functional-Based Tight-Binding Methods Nanoscience and Nanotechnology Letter (2015), 7, 911. IF= 1.444 (SCI)
36. C. He, W.X. Zhang,
Effect of Electric Field on Electronic Properties of Nanogenerators Based on
ZnO Nanowires, Nanoscience
and Nanotechnology Letter (2013), 5, 286. IF= 1.444 (SCI)
37. C. He, R.
Huang, Z.Q.
Shi, W.X.
Zhang, Coupling of electric
field and bending modulated ballistic transport properties of copper nanowires Materials Technology:
Advanced Functional Materials (2015), 30, A37. IF=
1.227(SCI)
38. Z.Q.
Shi*, Z.L Wei, C He* et al, Synthesis, crystal structure
and photoluminescence of novel blue-emitting Eu2+-doped (SiC)x–(AlN)1_xphosphors
by a nitriding combustion reaction,RSC Advance (2014), 4,62926. IF= 3.708 (SCI)
39. W.X.Zhang*, C.He*, T.Li, et al, First-principles study on the electronic
and magnetic properties of armchair graphane/graphene heterostructure
nanoribbons Solid State Communications (2015), 211, 23. IF= 1.897(SCI)
40. W.X.Zhang, T.Li, C.He* et al, First-principle study on Ag-2N
heavy codoped of p-type graphene-like ZnO nanosheet Solid State Communications (2015), 204, 47. IF= 1.897 (SCI)
41. W.
X. Zhang*,
Y. X. Bai, C. He* et al,
Electronic structure and
magnetic properties of N monodoping and (Ag,N) codoped graphene-like
ZnO sheet Materials Technology: Advanced Functional Materials (2014) , 29,
A118. IF= 0.746 (SCI)
42. C. He, W.X. Zhang,
Effect of size and stress field on electronic properties of ZnO nanowires Materials
Science Forum (2012) 724, 209. (EI)
43. C. He, W.X. Zhang,
D. Li, Q.W. Li, Z.Q.Shi, First-principles investigation on Ag, N codoped in
p-type ZnO Materials Science Forum (2012) 724, 114.(EI)
44. W. X. Zhang, C. He, Electroless Ni-W-P/Ni-B
duplex coatings on AZ91D magnesium alloy Int. Conf. Mech. Autom. Control Eng. 2010,
3895 (EI)
45. W.X. Zhang;Z.J.
Zhou; C. He; G. Li,
Chromium-free pretreatment and Ni-P alloys technology on magnesium alloy, Jilin
Daxue Xuebao (Gongxueban) (2011) 1, 78. (EI)
46. W.X. Zhang; X. Hu;
X.B. Lin; C. He* Zr-catalyzed hydrogen chemisorptions on an Al
Surface, Advanced Materials Research, (2011), 197-198, 1069. (EI)
47. W. X.
Zhang, Y. X. Bai, C. He, X. L. Wu, First-principle study
on the effect of high Ag-2N co-doping on theconductivity of ZnO. Bulletin of
Materials Science (2015), 38,747. IF=
0.899(SCI)
48. C. He, P.
Zhang, Y. F. Zhu, Q. Jiang, “Structures and quantum conduction of Cu nanowires under electric fields using first-principles” J. Phys. Chem. C(2008) 112 9045-9049 IF=4.52
49. C. He, J. S. Lian, Q. Jiang, “Glass-transition
temperature of low density amorphous water and related structures”, J. Phys. Chem. B 111(2007) 11177-11180. IF = 3.603
50. C. He, J. S. Lian, Q. Jiang, “Electronic structures and hydrogen bond network of high-density and
very high-density amorphous ices”, J. Phys. Chem. B 109( 2005) 19893-19896. IF = 3.603
51. C. He, J. S. Lian, Q. Jiang, “Electronic structures and hydrogen bond
network of ambient water and amorphous ices”, Chem. Phys. Lett. 437(2007) 45-49. IF = 2.28
52. W. X. Zhang, C.
He, “Melting of Cu Nanowires: A Study Using
Molecular Dynamics Simulation”, J. Phys. Chem. C 114(2010) 8717–8720. IF=4.52