1)
D.M. Yu#, S. Guo#, M. Yu#, W.W. Liu, X.K. Li, D.F. Chen, B. Li**, Z. Guo***, Y. Han*. Immunomodulation and osseointegration activities of
Na2TiO3 nanorods-arrayed coatings doped with different Sr
content. Bioactive Materials 10 (2022) 323-334
2)
J. Ye#, B. Li#**, M. Li, Y.F. Zheng, S.L. Wu, Y. Han*. Formation of a ZnO nanorods-patterned coating with
strong bactericidal capability and quantitative evaluation of the contribution
of nanorods-derived puncture and ROS-derived killing. Bioactive Materials 11 (2022) 181-191
3)
L. Zhang#, Y. Xue#, S. Gopalakrishnan, K. Li, Y. Han*, V.M. Rotello*. Antimicrobial peptide-loaded pectolite
nanorods for enhancing wound-healing and
biocidal activity of titanium. ACS Applied Materials & Interfaces 13 (2021) 28764-28773
4)
Y. Xue,
J. Chen, T.X. Ding, M.T. Mao, S.B. Zhu, J.H. Zhou, L. Zhang*, Y. Han**. Building biointegration of Fe2O3-FeOOH
coated titanium implant by regulating NIR irradiation in an infected model. Bioactive
Materials 8 (2022) 1-11
5)
J. Ye#, B. Li#, M. Li, Y.F. Zheng, S.L. Wu, D.F. Chen, Y. Han*. Eco-friendly bacteria-killing by nanorods through
mechano-puncture with top selectivity. Bioactive Materials 15 (2022)
173-184
6)
D.M. Yu#, B. Li#, M. Yu#, S. Guo, Z. Guo**, Y. Han*. Cubic multi-ions-doped Na2TiO3 nanorod-like coatings: structure-stable, highly efficient platform for
ions-exchanged release to immunomodulatory promotion on vascularized bone
apposition. Bioactive Materials 18 (2022) 72-90
7)
Y.
Huang, X. Zhao, C.B. Wang, J.Y. Chen, Y.Q. Liang, Z.L. Li, Y. Han, B.L. Guo*. High-strength
anti-bacterial composite cryogel for lethal noncompressible hemorrhage hemostasis:
Synergistic physical hemostasis and chemical hemostasis. Chemical Engineering Journal 427 (2022) 131977
8)
R.
Huang, L. Liu, B. Li, L. Qin, L. Huang, K.W.K. Yeung*, Y. Han*. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate
fabricating biological surface through dual-ion implantation to concurrently
modulate the osteogenic functions of mesenchymal stem cells and kill bacteria. Journal
of Materials Science & Technology 73 (2021) 31-44
9)
D.M. Yu#, S. Guo#, D. Yang#, B. Li*, Z. Guo*, Y. Han*. Interrod spacing dependent angiogenesis and
osseointegration of Na2TiO3 nanorods-patterned arrays via immunoregulation. Chemical Engineering Journal 426 (2021) 131187
10) K. Li, J. Chen, Y. Xue, T.X. Ding, S.B. Zhu, M.T. Mao,
L. Zhang*, Y. Han*. Polymer brush grafted antimicrobial peptide on
hydroxyapatite nanorods for highly effective antibacterial performance. Chemical
Engineering Journal 423 (2021) 130133
11) Y. Xue, J. Chen, L. Zhang*, Y. Han*. BSA-lysozyme coated NaCa2HSi3O9 nanorods on titanium for cytocompatibility and antibacterial activity. Journal
of Materials Science & Technology 88 (2021) 240-249
12)
H.W. Yang#, M. Yu#,
R. Wang, B. Li, X. Zhao, Y.L. Hao, Z. Guo, Y. Han*. Hydrothermally grown
TiO2-nanorods on surface mechanical attrition treated Ti: Improved
corrosion fatigue and osteogenesis. Acta Biomaterialia 116 (2020)
400-414
13)
J. Ye#, B. Li#,
M. Li, Y.F. Zheng, S.L. Wu, Y. Han*. ROS induced bactericidal activity
of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in
bacteria-infected rat tibias. Acta Biomaterialia 107 (2020) 313-324
14)
B. Li#, R. Huang#,
J. Ye#, L. Liu, L. Qin, J.H. Zhou, Y.F. Zheng, S.L. Wu, Y. Han*.
A self-healing coating containing curcumin for osteoimmunomodulation to
ameliorate osseointegration. Chemical Engineering Journal 403 (2020)
126323
15)
X. Zhao#, Y.P. Liang#,
B.L. Guo*, Z.H. Yin, D. Zhu, Y. Han*. Injectable dry cryogels with
excellent blood-sucking expansion and blood clotting to cease hemorrhage for
lethal deep-wounds, coagulopathy and tissue regeneration. Chemical
Engineering Journal 403 (2020) 126329
16)
S. Guo#, D.M. Yu#, X. Xiao, W.W. Liu, Z.G. Wu, L. Shi, Q.M. Zhao, D.
Yang, Y.J. Lu, X.H. Wei, Z. Tang, N. Wang, X.K. Li*, Y. Han*, Z. Guo*, A vessel subtype beneficial for osteogenesis enhanced
by strontium-doped sodium titanate nanorods by modulating macrophage
polarization. Journal of Materials
Chemistry B 8 (2020) 6048-6058
17)
K. Li,
Y. Xue, J.H. Zhou, L. Zhang*, Y. Han*. Silanized NaCa2HSi3O9 nanorods with a reduced pH increase on Ti for improving osteogenesis and
angiogenesis in vitro. Journal
of Materials Chemistry B 8 (2020) 691-702
18)
K. Li,
Y. Xue, T. Yan, L. Zhang*, Y. Han*. Si substituted hydroxyapatite nanorods on Ti for
percutaneous implants. Bioactive Materials 5 (2020) 116-123
19)
K. Li,
Y. Xue, L. Zhang*, Y. Han*. β-FeOOH/Fe-TiO2 heterojunctions on Ti for
bacteria inactivation under light irradiation and biosealing. Biomaterials
Science 8 (2020) 6004-6016
20)
L. Zhang#, S. Gopalakrishnan#, K. Li, L.S. Wang, Y. Han*, V.M. Rotello*. Fabrication of collagen films with enhanced mechanical
and enzymatic stability through thermal treatment in fluorous media. ACS
Applied Materials & Interfaces 12 (2020) 6590-6597
21)
X. Zhao#, Y.P. Liang#, Y. Huang, J.H. He, Y. Han, B.L. Guo*, Physical double-network hydrogel adhesives with rapid
shape adaptability, fast self-healing, antioxidant and NIR/pH
stimulus-responsiveness for multidrug-resistant bacterial infection and
removable wound dressing. Advanced Functional Materials 30 (2020)
1910748
22)
Y. Huang#, X. Zhao#, Z.Y. Zhang, Y.P. Liang, Z.H. Yin, B.J. Chen, L. Bai, Y. Han, B.L. Guo* Degradable
gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible
hemorrhage and simultaneously improving wound healing. Chemistry of
Materials 32 (2020) 6595-6610
23)
Y. Li,
X.M. Liu*, B. Li, Y.F. Zheng, Y. Han, D.F. Chen, K.W.K. Yeung, Z.D. Cui, Y.Q. Liang, Z.Y.
Li, S.L. Zhu, X.B. Wang, S.L. Wu*, Near-infrared light triggered phototherapy and
immunotherapy for elimination of methicillin-resistant staphylococcus aureus
biofilm infection on bone implant. ACS Nano 14 (2020) 8157-8170
24)
D.L.Han, Y.** Li, X.M. Liu*, B. Li, Y.Han, Y.**F. Zheng, K.W.K. Yeung, C.Y. Li, Z.D. Cui, Y.Q. Liang,
Z.Y. Li, S.L. Zhu, X.B. Wang, S.L. Wu*, Rapid bacteria trapping and killing of metal-organic
frameworks strengthened photo-responsive hydrogel for rapid tissue repair of
bacterial infected wounds. Chemical Engineering Journal 396
(2020) 125194
25)
Y.Q.
Qiao, X.M. Liu*, B. Li, Y.Han, Y.**F. Zheng, K.W.K. Yeung, C.Y. Li, Z.D. Cui, Y.Q. Liang,
Z.Y. Li, S.L. Zhu, X.B. Wang, S.L. Wu*. Treatment of MRSA-infected osteomyelitis using
bacterial capturing, magnetically targeted composites with microwave-assisted
bacterial killing. Nature Communications 11 (2020) 4446
26)
Y. Li,
X.M. Xu, X.M. Liu*, B. Li, Y.Han, Y.**F. Zheng, D.F. Chen, K.W.K. Yeung, Z.D. Cui, Z.Y. Li,
Y.Q. Liang, S.L. Zhu, X.B. Wang, S.L. Wu*. Photoelectrons mediating angiogenesis and
immunotherapy through heterojunction film for noninvasive disinfection. Advanced
Science 7 (2020) 2000023
27) L. Tan#, J.N. Fu#, F. Feng#,
X.M. Liu, Z.D. Cui, B. Li, Y.Han, Y.**F. Zheng, K.W.K. Yeung, Z.Y. Li, S.L. Zhu, Y.Q. Liang,
X.B. Feng, X.B. Wang, S.L. Wu*. Engineered probiotics biofilm enhances
osseointegration via immunoregulation and anti-infection. Science
Advances 6 (2020) eaba5723
28)
K. Li#, F. Dai#,
T. Yan, Y. Xue, L. Zhang*, Y. Han*. Magnetic silicium hydroxyapatite
nanorods for enhancing ssteoblast response in vitro and biointegration in
vivo. ACS Biomaterials Science & Engineering 5 (2019)
2208-2221
29)
L. Zhang*, T. Yan, Y. Xue, Y.
Han*. Magnetic hydroxyapatite nanotubes on micro-arc oxidized titanium for
drug loading. Materials Research Express 6 (2019) 095091
30)
M. Yu#,
Y.Z. Du#, Y. Han, B. Lei*. Biomimetic elastomeric bioactive
siloxane-based hybrid nanofibrous scaffolds with miRNA activation: A joint
physico-chemical-biological strategy for promoting bone regeneration. Advanced
Functional Materials 30 (2019) 1906013
31) Li, M.; Wan, P.; Wang, W.; Yang, K.; Zhang, Y.; Han, Y.**, Regulation of osteogenesis and osteoclastogenesis by
zoledronic acid loaded on biodegradable magnesium-strontium alloy. Scientific reports 2019, 9 (1),
933.
32) Li, K.; Liu, S.; Xue, Y.; Zhang, L.; Han, Y.**, A superparamagnetic Fe 3 O 4–TiO 2 composite coating
on titanium by micro-arc oxidation for percutaneous implants. Journal
of Materials Chemistry B 2019.
33) Li, J.; Liu, X.; Zhou, Z.; Tan, L.; Wang, X.; Zheng,
Y.; Han, Y.*; Chen, D.-F.;
Yeung, K. W. K.; Cui, Z., Lysozyme-Assisted Photothermal Eradication of
Methicillin-Resistant Staphylococcus aureus Infection and Accelerated Tissue
Repair with Natural Melanosome Nanostructures. ACS Nano 2019.
doi.org/10.1021/acsnano.9b03982.
34) Liu, Y.; Zheng, Y.F.; Chen, X.H.; Yang, J.A.; Pan,
H.B.; Chen, D.F.; Wang, L.N.; Zhang, J.L.; Zhu, D.H.; Wu, S.L.; Yeung, K.W.K.;
Zeng, R.C.; Han, Y.*; Guan,
S.K., Fundamental Theory of Biodegradable Metals—Definition, Criteria, and
Design. Advanced Functional Materials 2019, 29
(18), 1805402.
35) Zhou, R.; Han,
Y.**; Cao, J.; Li, M.; Jin, G.; Luo, H.; Zhang, L.; Su, B., Electrically
bioactive coating on Ti with bi-layered SnO 2–TiO 2 hetero-structure for
improving osteointegration. Journal of Materials Chemistry B 2018, 6 (23),
3989-3998.
36) Zhou, R.; Han,
Y.**; Cao, J.; Li, M.; Jin, G.; Du, Y.; Luo, H.; Yang, Y.; Zhang, L.; Su,
B., Enhanced osseointegration of hierarchically structured Ti implant with
electrically bioactive SnO2–TiO2 bilayered surface. ACS applied materials &
interfaces 2018, 10 (36), 30191-30200.
37) Zhou, J.; Zhao, L.; Li, B.; Han, Y.**, Nanorod diameter modulated osteogenic activity of
hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin
pathway. Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14 (5),
1719-1731.
38) Zhou, J.; Li, B.;
Han, Y.**, F-doped TiO 2 microporous coating on titanium with enhanced
antibacterial and osteogenic activities. Scientific reports 2018, 8 (1),
17858.
39) Zhang, L.; Guo, J.; Yan, T.; Han, Y.**, Fibroblast responses and antibacterial activity of Cu
and Zn co-doped TiO2 for percutaneous implants. Applied Surface Science 2018, 434,
633-642.
40) Li, K.; Yan, T.; Xue, Y.; Guo, L.; Zhang, L.; Han, Y.**, Intrinsically
ferromagnetic Fe-doped TiO2 coatings on titanium for accelerating osteoblast
response in vitro. Journal of Materials Chemistry B 2018, 6 (36),
5756-5767.
41) Li, B.; Gao, P.; Zhang, H.; Guo, Z.; Zheng, Y.; Han, Y.**, Osteoimmunomodulation,
osseointegration, and in vivo mechanical integrity of pure Mg coated with HA
nanorod/pore-sealed MgO bilayer. Biomaterials science 2018, 6 (12),
3202-3218.
42) Zhang, Y.; Zhang, L.; Li, B.; Han, Y.**, Enhancement in sustained release of antimicrobial
peptide from dual-diameter-structured TiO2 nanotubes for long-lasting
antibacterial activity and cytocompatibility. ACS applied materials &
interfaces 2017, 9 (11), 9449-9461.
43) Zhang, L.; Zhang, J.; Dai, F.; Han, Y.**, Cytocompatibility and antibacterial activity of
nanostructured H2Ti5O11 center dot H2O outlayered Zn-doped TiO2 coatings on Ti
for percutaneous implants. Scientific reports 2017, 7.
44) Zhang, E.; Wang, X.;
Han, Y.**, Research status of biomedical porous Ti and its alloy in
China. Acta Metall Sin 2017, 53 (12),
1555-1567.
45) Li, M.; Yang, X.; Wang, W.; Zhang, Y.; Wan, P.; Yang,
K.; Han, Y.**, Evaluation of the
osteo-inductive potential of hollow three-dimensional magnesium-strontium
substitutes for the bone grafting application. Materials Science and
Engineering: C 2017, 73, 347-356.
46) Zhou, J.; Li, B.;
Han, Y.**; Zhao, L., The osteogenic capacity of biomimetic hierarchical
micropore/nanorod-patterned Sr-HA coatings with different interrod spacings. Nanomedicine:
Nanotechnology, Biology and Medicine 2016, 12 (5),
1161-1173.
47) Zhang, Y.; Han,
Y.**; Zhang, L., Formation and Bioactivity of SrTiO3 Nanotubes on Titanium
by Modified Anodization and Hydrothermal Treatment. Journal of
Materials Science & Technology 2016, 32 (9),
930-936.
48) Zhang, L.; Guo, J.; Huang, X.; Zhang, Y.; Han, Y.**, The dual function of
Cu-doped TiO 2 coatings on titanium for application in percutaneous
implants. Journal of Materials Chemistry B 2016, 4 (21),
3788-3800.
49) Zhang, L.; Gao, Q.;
Han, Y.**, Zn and Ag co-doped anti-microbial TiO2 coatings on Ti by
micro-arc oxidation. Journal of Materials Science & Technology 2016, 32 (9),
919-924.
50) Xu, Z.; Li, M.; Li, X.; Liu, X.; Ma, F.; Wu, S.; Yeung,
K.; Han, Y.**; Chu, P. K.,
Antibacterial activity of silver doped titanate nanowires on Ti implants. ACS
applied materials & interfaces 2016, 8 (26),
16584-16594.
51) Wang, C.; Wang, F.;
Han, Y.**, The structure, bond strength and apatite-inducing ability of
micro-arc oxidized tantalum and their response to annealing. Applied
Surface Science 2016, 361, 190-198.
52) Li, M.; He, P.; Wu, Y.; Zhang, Y.; Xia, H.; Zheng, Y.; Han, Y.**, Stimulatory effects of the
degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating
ERK signaling pathway. Scientific reports 2016, 6,
32323.
53) Li, B.; Han, Y.**;
Li, M., Enhanced osteoblast differentiation and osseointegration of a
bio-inspired HA nanorod patterned pore-sealed MgO bilayer coating on
magnesium. Journal of Materials Chemistry B 2016, 4 (4),
683-693.
54) Zhang, L.; Han,
Y.**; Tan, G., Hydroxyaptite nanorods patterned ZrO2 bilayer coating on
zirconium for the application of percutaneous implants. Colloids
and Surfaces B: Biointerfaces 2015, 127, 8-14.
55) Wang, C.; Fan, Z.;
Han, Y.**, Formation and osteoblast behavior of HA nano-rod/fiber patterned
coatings on tantalum in porous and compact forms. Journal of Materials Chemistry B 2015, 3 (27),
5442-5454.
56) Zhou, J.; Shao, J.;
Han, Y.**, Effect of hydrothermal treatment model on stability and
bioactivity of microarc oxidized titania coatings. Applied Surface Science 2014, 303,
367-372.
57) Zhou, J.; Han,
Y.**; Lu, S., Direct role of interrod spacing in mediating cell adhesion on
Sr-HA nanorod-patterned coatings. International journal of nanomedicine 2014, 9,
1243.
58) Zhang, L.; Zhu, S.;
Han, Y.**; Xiao, C.; Tang, W., Formation and bioactivity of HA nanorods on
micro-arc oxidized zirconium. Materials Science and Engineering: C 2014, 43,
86-91.
59) Li, B.; Han, Y.**;
Qi, K., Formation mechanism, degradation behavior, and cytocompatibility of a
nanorod-shaped HA and pore-sealed MgO bilayer coating on magnesium. ACS
applied materials & interfaces 2014, 6 (20),
18258-18274.
60) Huang, R.; Zhuang, H.; Han, Y.**, Second-phase-dependent grain refinement in
Ti–25Nb–3Mo–3Zr–2Sn alloy and its enhanced osteoblast response. Materials
Science and Engineering: C 2014, 35, 144-152.
61) Huang, R.; Han,
Y.**; Lu, S., Enhanced osteoblast functions and bactericidal effect of Ca
and Ag dual-ion implanted surface layers on nanograined titanium alloys. Journal
of Materials Chemistry B 2014, 2 (28), 4531-4543.
62) Zhou, J.; Li, B.; Lu, S.; Zhang, L.; Han, Y.**, Regulation of osteoblast proliferation and
differentiation by interrod spacing of Sr-HA nanorods on microporous titania
coatings. ACS applied materials & interfaces 2013, 5 (11),
5358-5365.
63) Zhou, J.; Han,
Y.**, Effect of hydrothermal treatment model on the formation of Sr-HA
nanorod arrays on microarc oxidized titania coatings. Applied Surface Science 2013, 286,
384-390.
64) Wang, C.; Wang, F.;
Han, Y.**, Structural characteristics and outward–inward growth behavior of
tantalum oxide coatings on tantalum by micro-arc oxidation. Surface
and Coatings Technology 2013, 214, 110-116.
65) Huang, R.; Lu, S.;
Han, Y.**, Role of grain size in the regulation of osteoblast response to
Ti–25Nb–3Mo–3Zr–2Sn alloy. Colloids and Surfaces B: Biointerfaces 2013, 111,
232-241.
66) Huang, R.; Han,
Y.**, Structure evolution and thermal stability of SMAT-derived nanograined
layer on Ti–25Nb–3Mo–3Zr–2Sn alloy at elevated temperatures. Journal
of Alloys and Compounds 2013, 554, 1-11.
67) Huang, R.; Han,
Y.**, The effect of SMAT-induced grain refinement and dislocations on the
corrosion behavior of Ti–25Nb–3Mo–3Zr–2Sn alloy. Materials Science and
Engineering: C 2013, 33 (4), 2353-2359.
68) Zhang, L.; Wang, S.;
Han, Y.**, Interfacial structure and enhanced adhesion between anodized
ZrO2 nanotube films and Zr substrates by sedimentation of fluoride ions. Surface
and Coatings Technology 2012, 212, 192-198.
69) Zhang, L.; Han,
Y.**, Enhanced bioactivity of self-organized ZrO2 nanotube layer by
annealing and UV irradiation. Materials Science and Engineering: C 2011, 31 (5),
1104-1110.
70) Feng, A.; Han,
Y.**, Mechanical and in vitro degradation behavior of ultrafine calcium
polyphosphate reinforced magnesium-alloy composites. Materials & Design 2011, 32 (5),
2813-2820.
71) Yan, Y.; Sun, J.;
Han, Y.**; Li, D.; Cui, K., Microstructure and bioactivity of Ca, P and Sr
doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surface
and Coatings Technology 2010, 205 (6), 1702-1713.
72) Yan, Y.; Han,
Y.**; Li, D.; Huang, J.; Lian, Q., Effect of NaAlO2 concentrations on
microstructure and corrosion resistance of Al2O3/ZrO2 coatings formed on
zirconium by micro-arc oxidation. Applied Surface Science 2010, 256 (21),
6359-6366.
73) Feng, A.; Han,
Y.**, The microstructure, mechanical and corrosion properties of calcium
polyphosphate reinforced ZK60A magnesium alloy composites. Journal
of Alloys and Compounds 2010, 504 (2), 585-593.
74) Zhang, L.; Han,
Y.**, Effect of nanostructured titanium on anodization growth of
self-organized TiO2 nanotubes. Nanotechnology 2009, 21 (5),
055602.
75) Han, Y.**; Yan, Y.; Lu, C.; Zhang, Y.; Xu, K., Bioactivity and
osteoblast response of the micro‐arc oxidized zirconia films. Journal
of Biomedical Materials Research Part A: An Official Journal of The Society for
Biomaterials, The Japanese Society for Biomaterials, and The Australian Society
for Biomaterials and the Korean Society for Biomaterials 2009, 88 (1),
117-127.
76) Yan, Y.; Han,
Y.**; Lu, C., The effect of chemical treatment on apatite-forming ability
of the macroporous zirconia films formed by micro-arc oxidation. Applied
Surface Science 2008, 254 (15), 4833-4839.
77) Yan, Y.; Han,
Y.**; Huang, J., Formation of Al2O3–ZrO2 composite coating on zirconium by
micro-arc oxidation. Scripta Materialia 2008, 59 (2),
203-206.
78) Sun, J.; Han,
Y.**; Cui, K., Innovative fabrication of porous titanium coating on
titanium by cold spraying and vacuum sintering. Materials Letters 2008, 62 (21-22),
3623-3625.
79) Sun, J.; Han,
Y.**; Cui, K., Microstructure and apatite-forming ability of the
MAO-treated porous titanium. Surface and Coatings Technology 2008, 202 (17),
4248-4256.
80) Li, X.-M.; Han,
Y.**, Mechanical properties of Ti (C0. 7N0. 3) film produced by plasma
electrolytic carbonitriding of Ti6Al4V alloy. Applied Surface Science 2008, 254 (20),
6350-6357.
81) Han, Y.**; Sun, J.; Huang, X., Formation mechanism of HA-based
coatings by micro-arc oxidation. Electrochemistry Communications 2008, 10 (4),
510-513.
82) Han, Y.**; Chen, D.; Sun, J.; Zhang, Y.; Xu, K., UV-enhanced
bioactivity and cell response of micro-arc oxidized titania coatings. Acta
Biomaterialia 2008, 4 (5), 1518-1529.
83) Yan, Y.; Han,
Y.**, Structure and bioactivity of micro-arc oxidized zirconia films. Surface
and Coatings Technology 2007, 201 (9-11), 5692-5695.
84) Sun, J.; Han,
Y.**; Huang, X., Hydroxyapatite coatings prepared by micro-arc oxidation in
Ca-and P-containing electrolyte. Surface and coatings technology 2007, 201 (9-11),
5655-5658.
85) Guo, D.; Xu, K.; Zhao, X.; Han, Y.*, Development of a strontium-containing hydroxyapatite bone
cement. Biomaterials 2005, 26 (19),
4073-4083.
86) Han, Y.**; Xu, K., Photoexcited formation of bone apatite‐like
coatings on micro‐arc oxidized titanium. Journal of Biomedical
Materials Research Part A: An Official Journal of The Society for Biomaterials,
The Japanese Society for Biomaterials, and The Australian Society for
Biomaterials and the Korean Society for Biomaterials 2004, 71 (4),
608-614.
87) Han, Y.**; Xu, K.; Montay, G.; Fu, T.; Lu, J., Evaluation of
nanostructured carbonated hydroxyapatite coatings formed by a hybrid process of
plasma spraying and hydrothermal synthesis. Journal of Biomedical
Materials Research: An Official Journal of The Society for Biomaterials, The
Japanese Society for Biomaterials, and The Australian Society for Biomaterials
and the Korean Society for Biomaterials 2002, 60 (4),
511-516.
88) Han, Y.**; Fu, T.; Lu, J.; Xu, K., Characterization and
stability of hydroxyapatite coatings prepared by an electrodeposition and
alkaline‐treatment process. Journal of Biomedical Materials
Research: An Official Journal of The Society for Biomaterials and The Japanese
Society for Biomaterials 2001, 54 (1), 96-101.